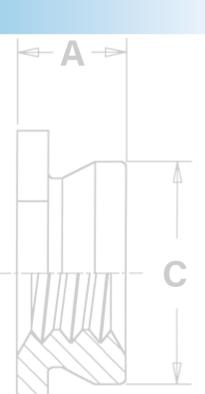

PEM® self-clinching flush nuts are flush with both sides of the sheet.



F

PEMSERT® SELF-CLINCHING FASTENERS

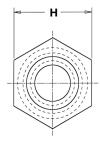
PEMSERT® self-clinching flush nuts are designed to be installed into sheets as thin as .060"/1.5 mm.

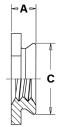
F™ and F4™ fasteners are ideal for applications where a thin sheet requires threads stronger than a tapped hole but still must remain flat, with no protrusions on either surface, enhancing the functional and cosmetic qualities of the entire assembly.

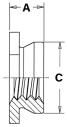
PEMSERT® flush nuts are installed easily by squeezing them into a round hole in metal sheets. They can be installed before bending and forming to provide threads in places which would be inaccessible for installation after chassis are formed. The hexagonal head along with the proven PEM® self-clinching design ensures high axial and torsional strength.

F4[™] flush nuts are specifically designed to be installed into stainless steel sheets.

PEMSERT® F™ fasteners can be ordered to conform to US NASM45938/4 specifications.*


*To meet national aerospace standards and to obtain testing documentation, product must be ordered to NASM45938/4 specifications. Consult our Marketing department for a complete Military Specification and National Aerospace Standards Reference Guide (Bulletin NASM) or check our web site.





Profile for -1 shank code.

Profile for -2, -3, -4, & -5 shank codes.

PART NUMBER DESIGNATION <u>632</u> <u>632</u> Material Thread Shank Туре Code Code Code

All dimensions are in inches.

	Thread Size		pe Material Hardened Stainless Steel	Thread Code	Shank Code	A (Shank) Max.	Sheet Thickness	Hole Size In Sheet +.003000	C Max.	H Nom.	Min. Dist. Hole © To Edge
	.086-56	51661		050	1	.060	.060091	170	171	100	00
	(#2-56)	F	F4	256	2	.090	.091 Min.	.172	.171	.188	.23
0	.112-40	Е	F4	440	1	.060	.060091	.172	.171	.188	.23
ш	(#4-40)	Г	Γ4	440	2	.090	.091 Min.	.172			.23
正	.138-32	F	F4	632	1	.060	.060091	.213	.212	.250	.27
Ξ	(#6-32)	(#6-32)			2	.090	.091 Min.	.213			
	.164-32	F	F4	832	1	.060	.060091	.290	.289	.312	.28
	(#8-32)	•	Γ 4	032	2	.090	.091 Min.	.230			
	.190-32	F	F4	032	1	.060	.060091	.312	.311	.343	.31
	(#10-32)	•	14	032	2	.090	.091 Min.	.012	.011	.545	.31
	.250-20	F F4		F4 0420	3	.120	.125156	.344	.343	.375	.34
	(1/4-20)		F4		4	.151	.156187				
	(1/4-20)				5	.182	.187 Min.				

All dimensions are in millimeters.

	Thread Size		pe Material Hardened Stainless Steel	Thread Code	Shank Code	A (Shank) Max.	Sheet Thickness	Hole Size In Sheet +0.08	C Max.	H Nom.	Min. Dist. Hole © To Edge
	M2 x 0.4	F	F4	M2	1	1.53	1.53 - 2.32	4.37	4.35	4.8	6
	WIZ X OIT	•	14	IVIZ	2	2.3	2.32 Min.	4.07	4.00	4.0	
ပ	M2.5 x 0.45	F	F4	M2.5	1	1.53	1.53 - 2.32	4.37	4.35	4.8	6
_	WZ.J X 0.4J	'	14	IVIZ.J	2	2.3	2.32 Min.	4.57			J
T B	M3 x 0.5	F	F4	M3	1	1.53	1.53 - 2.32	4.37	4.35	4.8	6
ш	INIO X 0.0	'	14		2	2.3	2.32 Min.				
Σ	M4 x 0.7	F	F4	M4	1	1.53	1.53 - 2.32	7.37	7.35	7.9	7.2
	W4 X U.7	'	14	IVIT	2	2.3	2.32 Min.	1.31			1.2
	M5 x 0.8	F	F4	M5	1	1.53	1.53 - 2.32	7.92	7.9	8.7	8
	IND X 0.0	, r	14	IVIO	2	2.3	2.32 Min.	1.32	1.5	0.7	0
			F F4	M6	3	3.05	3.18 - 3.96	8.74			8.8
	M6 x 1	F			4	3.84	3.96 - 4.75		8.72	9.5	
					5	4.63	4.75 Min.				

MATERIAL AND FINISH SPECIFICATIONS

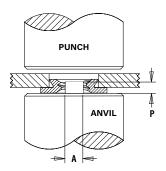
	Threads Fastener Materials		Standard Finish	For Use in Sheet Hardness: (1)		
Туре	Internal, ASME B1.1, 2B / ASME B1.13M, 6H	B1.1, 2B / 300 Series		Passivated and/or Tested Per ASTM A380	HRB 88 / HB 183 or less	HRB 70 / HB 125 or less
F						•
F4	F4 -		•	•		
Part Number Co	de For Finishes			None		

⁽¹⁾ HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

A NOTE ABOUT HARDENED 400 SERIES STAINLESS STEEL

In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed. In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. It is for this reason that 400 series F4™ fasteners are offered. However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product:

- Will be exposed to any appreciable corrosive environment.
- Requires non-magnetic fasteners.
- Will be exposed to any temperatures above 300° F (149° C)


If any of the these are issues, please contact $\underline{techsupport@pemnet.com}$ for other options.

INSTALLATION

- 1. Prepare properly sized round mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener onto the anvil and place the mounting hole (preferably the punch side) over the shank of the fastener.
- 3. With installation punch and anvil surfaces parallel, apply sufficient squeezing force only to embed hexagonal head flush in sheet. The metal displaced by the head flows evenly and smoothly around the back-tapered shank of the fastener, securely locking it into place with high pullout resistance while at the same time, the embedded hexagonal head provides high torque resistance.

Installation Tooling - F and F4 Nuts

Thread	HAEGER® Part Number		PEMSERTER®	Part Number	Anvil Dimensions				
	Amuil	Dl	A	Dunah	A		P		
Code	Anvil	Punch	Anvil	Punch	+.002"000"	+ 0.05mm	±.005"	±0.13mm	
256/M2/M2.5	H-108-0018L	H-108-0018L	8006193	975200048	.060"	1.52mm	.050"	1.27mm	
440/M3	H-108-0018L	H-108-0018L	975200040	975200048	.077"	1.96mm	.050"	1.27mm	
632	H-108-0018L	H-108-0018L	975200041	975200048	.092"	2.34mm	.050"	1.27mm	
832/M4	H-108-0018L	H-108-0018L	975200042	975200048	.124"	3.15mm	.050"	1.27mm	
032/M5	H-108-0018L	H-108-0018L	975200043	975200048	.139"	3.53mm	.050"	1.27mm	
0420/M6	H-108-0018L	H-108-0018L	975200044	975200048	.186"	4.72mm	.100"	2.54mm	

Installation Notes

- For best results we recommend using a HAEGER® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. See our website for more information.
- Visit the Animation Library on our website to view the installation process.

For Additional HAEGER® and PEMSERTER® Tooling Information / Part Numbers

PERFORMANCE DATA(1)

F™ NUTS

			_Axial	Rec.		Test Shee	et Material	
	Thread	Shank	Tensile Strength	Tightening Torque (3)	5052-H34 A	luminum	Cold-rolled Steel	
	Code	Code	(lbs.) (2)	(in. lbs.)	Installation (lbs.)	Pushout (lbs.)	Installation (lbs.)	Pushout (lbs.)
	256	1 2	130	1.50	2000	150	3000	200
IED	440	1 2	165	2.50	2000	150	3000	200
NIF	632	1 2	190	3.50	2000	200	3600	200
n	832	1 2	230	5.25	2000	240	4000	240
	032	1 2	280	7.50	2500	240	5000	240
	0420	3 4 5	1035	36	3500	640	6000	840

		_Axial	Rec.	Test Sheet Material					
Thread	Shank			5052-H34 A	lluminum	Cold-rolled Steel			
Code	Code	(kN) (2)	(N-m)	Installation (kN)	Pushout (N)	Installation (kN)	Pushout (N)		
M2	1 2	0.57	0.16	8.9	665	13.3	890		
M2.5	1 2	0.68	0.23	8.9	665	13.3	890		
М3	1 2	0.85	0.36	8.9	665	13.3	890		
M4	1 2	1	0.58	8.9	1068	17.8	1068		
M5	1 2	1.3	0.88	11.1	1068	22.2	1068		
M6	3 4	4.5	3.7	15.6	2847	26.7	3736		
	M2 M2.5 M3 M4 M5	Code Code M2 1 2 1 M2.5 2 M3 1 2 1 2 1 2 1 2 3	Thread Code Shank Code Tensile Strength (kN) (z) M2 1 2 0.57 M2.5 2 0.68 M3 1 2 0.85 M4 1 2 1 M5 1 1.3 M6 4 4 4.5	Thread Code Shank Code Tensile Strength (kN) (2) Tightening Torque (3) (N-m) M2 1 2 0.57 0.16 M2.5 1 2 2 0.68 0.23 M3 1 0.85 0.36 M4 1 1 0.58 M5 1 1.3 0.88 M6 4 4 4.5 3.7	Thread Code Shank Code Tensile Strength (kN) (2) Tightening Torque (3) (N-m) 5052-H34 A Installation (kN) M2 1 0.57 0.16 8.9 M2.5 1 0.68 0.23 8.9 M3 1 0.85 0.36 8.9 M4 1 1 0.58 8.9 M5 1 1.3 0.88 11.1 M6 4 4.5 3.7 15.6	Thread Code Shank Code Tensile Strength (kN) (2) Tightening Torque (3) (N-m) 5052-H34 Aluminum Installation (kN) Pushout (N) M2 1 2 2 0.57 0.16 8.9 665 M2.5 2 2 2 2 0.88 0.23 8.9 665 M3 1 2 0.85 0.36 8.9 665 M4 1 2 1 0.58 1 0.58 8.9 1068 M5 1 2 2 3 0.88 11.1 1068 M6 4 4 4.5 3.7 15.6 2847	Thread Code Code Tensile Strength (kN) (2) Tightening Torque (3) (N-m) Tensile Installation (kN) Pushout (N) Pushout		

F4™ NUTS

	Thread	Shank	Axial Tensile Strength	Rec. Tightening Torque (3)	Test Sheet 300 Series Sta	
	Code	Code	(lbs.) (2)	(in. lbs.)	Installation (lbs.)	Pushout (lbs.)
	256	1 2	130	1.50	7200	270
IED	440	1 2	165	2.50	7200	270
NIF	632	1 2	190	3.50	7200	290
n	832	1 2	230	5.25	9000	450
	032	1 2	280	7.50	9000	450
	0420	3 4	1035	36	14000	1000
	0420	3	1035	36	14000	

	Thread	Shank	Axial Tensile	Rec. Tightening	Test Sheet Material 300 Series Stainless Steel		
	Code	Code	Strength (kN) (2)	Torque (3) (N-m)	Installation (kN)	Pushout (N)	
	M2	1 2	0.57	0.16	32	1200	
RIC	M2.5	1 2	0.68	0.23	32	1200	
MET	М3	1 2	0.85	0.36	32	1200	
_	M4	1 2	1	0.58	40	2000	
	M5	1 2	1.3	0.88	40	2000	
	M6	3 4 5	4.5	3.7	65	4500	

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (2) Failure occurs in screw stripping using a 60 ksi screw and the shortest shank length fastener.
- (3) Torque values shown will produce a preload of 70% of axial tensile strength with nut factor "k" equal to .2. Threads may strip or head of the F nut may bend and/ or fail if screw is over-torqued beyond these values or if actual k value is less than .2.

All PEM® products meet our stringent quality standards. If you require additional industry or other specific quality certifications, special procedures and/or part numbers are required. Please contact your local sales office or representative for further information.

Regulatory compliance information is available in Technical Support section of our website. Specifications subject to change without notice. See our website for the most current version of this bulletin.

North America: Danboro, Pennsylvania USA = E-mail: info@pemnet.com = Tel: +1-215-766-8853 = 800-237-4736 (USA)

Europe: Galway, Ireland • E-mail: europe@pemnet.com • Tel: +353-91-751714 Asia/Pacific: Singapore - E-mail: singapore@pemnet.com - Tel: +65-6-745-0660

Shanghai, China • E-mail: china@pemnet.com • Tel: +86-21-5868-3688

Visit our PEMNET™ Resource Center at www.pemnet.com = Technical support e-mail: techsupport@pemnet.com